CEILING SOLUTIONS

DGS FLAT, CURVED \& SHORTSPAN
dRYwall grid systems technical guide

Solutions

	features and benerits	:-: 4
\checkmark	components	:..: 5
	Main Runners	
	Cross Tees	
	Perimeter Treatment	
$\stackrel{\rightharpoonup}{\sim}$	ACCESSORIES	:..: 6
\square	SUSPENDED DRYWALL	
	GRID SYSTEM DETAIL	:.:. 8
\square	HANGING AND FRAMING	:... 12
\square	ESTIMATING MATERIAL	:..: 13
\sim	CURVED MAIN RUNNER	:-:. 16
\sim	arches and Barrel vaults	:... 18
\curvearrowright	DOMES	:-:: 20
\sim	radius in metric	:-: 22
\curvearrowright	CREATING AN ELLIPSE	$\cdots: 23$

DGS SHORTSPAN
DRYWALL GRID SYSTEM

FEATURES AND BENEFITS	$\ldots . .: 25$
SHORTSPAN	
Locking Angle Trim	$\ldots .: 26$
COMPONENTS	$\ldots . .: 27$
SHORTSPAN INSTALLATION DETAILS	$\ldots . .: 28$
SUPPORT OPTIONS	$\ldots .:: 29$
PERIMETER SOLUTIONS	$\ldots .:: 30$

Hem N.	Descripion	Perspectiv	Application	$\left.\begin{array}{c} \text { Length } \\ (m(m) \end{array}\right)$	$\begin{gathered} \text { Height } \\ (m m) \end{gathered}$	$\underset{\text { pcs }}{\substack{\text { aty }}}$	$\begin{gathered} \text { Weight/ } \\ \text { carton } \\ \text { (kg) } \end{gathered}$	Ctrs/pallet
dwacs	Drywall Attachment Clip facilitates transition from drywall to acoustica ceiling; locks under bulb of grid section to prevent upward movement and provide secure attachment surface on one side of exposed grid.			101.6	41	100	4	24
DW30C DW45C DW60C DW90C	30, 45, 60 and 90 degree Drywall Angle Clips are used to create positive and secure angles for drywall and ceiling installations on either Main Runners or Cross Tees.	\uparrow		$\begin{aligned} & 165 \\ & 165 \\ & 165 \\ & 134 \end{aligned}$	- -	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \end{aligned}$
RC2 AG	Radius Clip is used for drywall applications which form curved installations; attaches to the web of the Main Runner with four 10 mm pan head screws; install at all knockout locations.			63.50	42.30	205	4	60
XTAC	Cross Tee Adapter Clip used to attach field cut Cross Tees to Main Runners.			70	70	100	4	60
DW50 LT	Transition Clip for Drywall 13 mm Facilitates transition from drywall to acoustical ceiling; one- sided hold down clip; eliminates need for drywall bead. Locking tabs provide secure location for DGS tees.			102	29	125	7	24
DW58 LTAG	Transition Clip for Drywall 15 mm Facilitates transition from drywall to acoustical ceiling; one-sided hold down clip; eliminates need for drywall bead. Locking tabs provide secure location for DGS tees.			102	26	125	7	24
A3516 A3526	DGS Timber Hanger or DGS Flat system 38 mm high for wooden beams perpendicular to main runners		,	$\begin{aligned} & 310 \\ & 460 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	50 50	3 6	10 10
ALP70 ALP100	Low Plenum Clip Low plenum hanger bracket $-40 \mathrm{~mm} /$ 96 mm (min/max Grid face-upper fixing) Low plenum hanger bracket - $40 \mathrm{~mm} / \mathrm{mm}$ (min/max Grid face-upper fixing)			70 100	30 30	100 100	3	\cdot

\qquad

1. Butt Joint

2. Spotight Fixture

3. Securing a single Cross Tee

4. Channel and Angle Trim
5. Angle Clip

6. Transition

14. AXIOM Perimeter Trim

15. Surface Mounted Fixture

Adtion may be reauired tos

DGS Flat -Load table kg/m² Load conform EN14195

The following table gives the maximum permitted load in $\mathrm{kg} / \mathrm{m}^{2}$ for the DGS - Flat system for the hanger distance (m) and Main Runner / Cross tees spacings noted.

Maximum	Main Runner spacing 1800 mm					Main Runner spacing 1200 mm					Main Runner spacing 600 mm				
	Cross tee BP7934G spacing at:					Cross tee BP7930G spacing at:					Cross tee BP7920G spacing at				
						300 mm	100 mm	450 mm	500 mm	600 mm	300 mm	. 400 mm	450 mm	500 mm	600 mm
800 mm	16.2	12.1	10.7	-		48.5	43.7	38.8	34.9	29.1	-	-	-	-	-
900 mm	16.2	12.1	10.7	-		33.5	33.9	34.0	34.1	29.1	-	-	-	-	-
1000 mm	15.6	12.1	10.7	-	-	23.9	24.3	24.4	24.5	24.6	49.3	49.7	49.8	50.0	50.0
1100 mm	${ }^{11.4}$	${ }^{11.8}$	10.7	-	-	17.4	17.8	18.0	18.1	18.2	36.5	36.9	37.0	37.1	37.2
1200 mm	-	-	-	-	-	13.0	13.4	13.5	13.6	13.8	27.6	27.9	28.1	28.2	28.3
1300 mm	-	-	-	-	-	-	-	-	-	-	21.2	21.5	21.7	21.8	21.9
1400 mm	-	-	-	-	-	-	-	-	-	-	16.5	16.9	17.0	17.1	17.2

Values in the above table conform to EN 14195:
. Load figures in $\mathrm{kg} / \mathrm{m}^{2}$ for boards load \& potential insulation. Grid load already deducted.
Values assuming that the maximum defliction of the grid is $\angle / 500$ but not greater than $4 \mathrm{~mm}(L=$ span).
No other applied loads such as luminaires, air diffusers, smoke detectors, sprinkletrs, hanging signs etc. are permitted if not already taken into account.
Sirst main runner parallel to the wall at max 1200 mm spacing. - First main runner parallel to the wall at max 1200 mm spacing.

A safery load of $10 \mathrm{~kg} / \mathrm{m}^{2}$ should be be subtracted from the above num and checked against maximum admissible load value per hanger. A saiety load of $10 \mathrm{~kg} / \mathrm{m}^{2}$ should be subtracted from the above
Please contact Armstrong Technical Sales for further details.

DGS Flat - Quantities

$\begin{gathered} \text { Main } \\ \text { Reunner } \\ \text { centre at } \\ 1000 \end{gathered}$	Quantities required per $1 \mathrm{~m}^{2}$ no waste included)		$\begin{gathered} \text { Main } \\ \text { Runner } \\ \text { Rentre a } \\ \hline \end{gathered}$	Quantities required per $1 \mathrm{~m}^{2}$ no waste included)		$\begin{gathered} \text { Main } \\ \text { Runner } \\ \text { centre at } \end{gathered}$	Quantities required per $1 \mathrm{~m}^{2}$(no waste included)		$\begin{gathered} \text { Main } \\ \begin{array}{c} \text { Runner } \\ \text { centre at } \\ 600 \mathrm{~mm} \end{array} \end{gathered}$	Quantities required (no waste included)	
Cross Tee centres	Cross Tee	$\begin{gathered} \text { Main } \\ \text { Runner } \end{gathered}$	Cross Tee centres	Cross ${ }^{\text {T }}$	$\begin{gathered} \text { Main } \\ \text { Runner } \end{gathered}$	Cross Tee centres	Cross Te	$\begin{gathered} \text { Main } \\ \text { Runner } \end{gathered}$	Cross Tee centres	Cross	$\begin{gathered} \text { Main } \\ \text { Runner } \end{gathered}$
$300 \mathrm{~mm}{ }^{(3)}$	3.4 m	0,56 lm	$300 \mathrm{~mm} \mathrm{~m}^{(3)}$	3.341	0.84 lm	$300 \mathrm{~mm}{ }^{\text {³ }}$)	3.34	1.12 mm	$300 \mathrm{~mm} \mathrm{~m}^{(3)}$	3.34	1.67 m
$400 \mathrm{~mm}{ }^{*}(2)$	2.50 lm		$400 \mathrm{mm*}$ *2)	2.50 m		$400 \mathrm{~mm}{ }^{*}(2)$	2.50 m		$400 \mathrm{~mm}{ }^{*}(2)$	2.50 m	
$450 \mathrm{~mm}{ }^{\text {² }}$ (1)	2.23 m		$450 \mathrm{~mm}{ }^{*}(1)$	2.23 mm		$450 \mathrm{~mm}{ }^{\text {² }}$ ($)$	2.231 m		$450 \mathrm{~mm}{ }^{\text {(1) }}$ (2.231 m	
$500 \mathrm{~mm}{ }^{\text {(2) }}$	2.00 lm		$500 \mathrm{~mm}{ }^{(2)}$	2.00 m		$500 \mathrm{~mm}{ }^{*}(2)$	2.00		$500 \mathrm{~mm}{ }^{(2)}$	2.00	
$600 \mathrm{~mm}{ }^{\text {\% }}$ (3)	1.67 m		$600 \mathrm{~mm}{ }^{\text {(3) }}$	1.67 lm		$600 \mathrm{~mm}{ }^{\text {(3) }}$	1.67 m		$600 \mathrm{~mm}{ }^{\text {(3) }}$	1.67 lm	

(1) reauires Main Runner slot at 150 mm
(2) requ:
(3) requires Main Runner with slot spacing 100 mm or 150 mm

Suitable suspension hangers must be used and spaced as required to support load
DGS should always be installed in accordance with all applicable building codes and regulations.

CREATING CURVED FRAMING FOR DRYWALL IS EASY AND OFFERS UNLIMITED POSSIBILITIES.

Custom radiii to suit any design installation.
You control the curve.
Not limited to a pre-selected or pre-determined curved radius.
Full range of clips and accessories make installation easier than bending stud and track.

RC2 AG Clip

Radius and drwwal thickness will determine on centre spacing of cuts.
Reier to "Establisting an Act" on page 17 for creating a cuved template.

定 $\mid 203 \mathrm{~mm}(87 \mid 403 \mathrm{~mm}(167 \mid$ RC2 AG clip must be installed on all lockout tocations whether
cut or uncut when used to f time a flot or o curved celing.

$\otimes \otimes$	$\otimes \otimes$
$\otimes \otimes$	$\otimes \otimes$

$$
\begin{aligned}
& \begin{array}{c}
\text { nstal RC2 } 2 \text { A Clip using } \\
\text { screws per clip. } \\
\text { sce }
\end{array} \\
& \begin{array}{l}
\text { screw per ilip. } \\
\text { RC2 } C \text { C Clip } \\
\text { used to secure }
\end{array} \\
& \begin{array}{l}
\text { the Main Runner at the desired } \\
\text { angle in curred ceiling with sla }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Reier } \\
\text { on page } \\
\text { 7. } \\
\text { 7. }
\end{array}
\end{aligned}
$$

ETERMINING RADIUS FROM RISE TO RUN

Example: Radius $=\mathbf{3 0 0} \mathrm{cm}$

COMPLETING THE TEMPLATE

1. Draw radius on template
2. Cut along the radius and remove section of template
3. Cut Main Runner as required and position along the cut radius on the template (use the chart below)
4. Screw RC2 AG clips to faceted Main Runner at all knoc kout locations*
5. On the template, mark a slot location reference point to maintain consistent slot location

*RC2 AG Clip placement

- RC2 AG Clip placement
Vauts- C Coss See pacementin in lots between cuts
Vallevs. Coss tea
 (tight radius instalations may reauire bending up of
the flange at ends of Cosss Tees)

CURVED MAIN RUNNER

CONTRACTORS' EFFICIENCY AND UNDERSTANDING
OF THE SUSPENDED GRID SYSTEM CONSTRUCTION PROVIDES PERFORMANCE BENEFITS AND COST SAVINGS

An unlimited range of vaults and valleys can be constructed using faceted Main Runners made on the job to meet design needs
Single and multiple curved ceilings can be framed quickly and easily

Working with vault

1. Suitable suspension hangers spaced along the Main Runners not more than 1200 mm on centre (dependent upon Gypsum board construction).
2. Add vertical braces as required to stabilise the frame.
3. Thickness of the sheeting material is determined by its plasticity.
(Refer to supplying manufacturer's recommendation)
4. For vaults, suitable suspension hangers spaced along the Main Runners not more than 1200 mm on centre (dependent upon Gypsum board construction).
Angle and channel trim is used to frame the ends of the structure.

Barrel vault

Vault perimeter light cove

Floating vault

Drywall ceiling with Axiom light cov

DOMES, LIKE ARCHES, HAVE MANY VARIABLE CHARACTERISTICS THAT MAKE EACH DESIGN UNIQUE. WITH A SUSPENDED DRYWALL GRID SYSTEM, YOU CAN EASILY CREATE THE DESIRED LOOK OF DOMES RANGING FROM SIMPLE TO COMPLEX.

Working with domes

Determine the starting point at the top and bottom of the dome.
2. Prepare a sheet metal disk for the top of the dome. The disk should be 300 to 600 mm in diameter and should be fabricated from stee of sutable thickness. Note that the centre of the dome may architectural detail. Refer to "Options for top of domes" on page 21 .
. Prepare a ring for the base of the dome from rolled angle or channel.
4. Attach curved Main Runners to the disk at the top of the dome and to the ring at the bottom.
5. Main Runners should be spaced no greater than 1200 mm on centre (measured at the bottom ring).
6. Use Cross Tees cut to the appropriate length and screwed to the flange of the Main Runners to complete the dome frame structure. 7. Cross Tees are not required near the top of the dome when the space between Main Runners becomes less than 400 mm .
8. The boarding must be cut into pie shaped sections and screw attached to the framework.

Light fixture

CREATING A DOME

	000	3300	3600	3900	4200	4500	4800	5100	5400	5700	600	6300	660	690	
600	60	55	50	46	43	40	38	35	33	32	30	29	27	26	25
1200	250	226	206	189	175	163	152	143	135	128	121	115	110	105	101
1800	600	534	482	440	405	375	350	328	309	292	276	263	250	239	229
2400	1200	1035	917	826	753	693	643	600	563	530	501	475	452	431	412
	7500	7800	8100	8400	8700	9000	9300	9600	9900	10200	10500	10800	11100	11400	1700
600	24	23	22	21	21	20	19	19	18	18	17	17	16	16	
1200	97	93	89	86	83	80	78	75	73	71	69	67	65	63	62
1800	219	211	203	195	188	182	176	170	165	160	155	151	147	143	139
2400	394	378	364	350	338	326	315	305	295	286	278	270	263	255	249
	12000	12300	12600	12900	13200	13500	13800	14100	14400	14700	15000	15300	15600	15900	1620
600	15	15	14	14	14	13	13	13	13	13	12	12	12	11	
120	60	59	57	56	55	53	52	51	50	49	48	47	46	45	45
1800	136	132	129	126	123	121	118	115	${ }^{113}$	11	108	106	105	102	100
2400	242	236	231	225	220	215	210	206	201	197	193	189	186	182	179
	16500	16800	17100	17500	17700	18000	18300	1800	18900	19200	19500	19800	20100	20400	2070
600	11	11	11	10	10	10	10	10	10	9	9	9	9	9	
1200	44	43	42	41	41	40	39	39	38	38	37	36	36	35	35
1800	98	97	95	93	92	90	89	87	86	85	83	82	81	80	78
240	175	172	169	166	163	161	158	155	153	151	148	146	144	142	140
	21000	21300	21600	21900	22200	22500	22800	23100	23400	23700	24000	24300	24600	24900	297
600	9	8	8	8	8	8	8	8	8	8	8	7	7	7	
1200	34	34	33	33	32	32	32	31	135	128	121	115	110	105	101
1800	77	76	75	74	73	72	71	70	69	68	68	67	66	65	64
2400	138	136	134	132	130	28	127	125	123	122	120	19	117	116	115
	25500	25800	26100	26400	26700	27000	27300	27600	27900	23200	28500	28800	29100	29400	2970
600	7	7	7	7	7	7	7	7	6	6	6	6	6	6	
1200	28	28	28	27	27	27	26	26	26	26	25	25	25	25	24
1800	64	${ }^{63}$	62	61	61	60	59	59	58	58	57	56	56	55	55
2400	${ }^{113}$	12	11	109	108	107	106	105	103	102	101	100	99	98	97
	30000	30000	30600	30900	31200	31500	31800	32100	32400	32700	33000	33300	33600	33900	3420
600	6	6	6	6	6	6	6	6	6	6	5	5	5	5	
1200	24	24	24	23	23	23	23	22	22	22	22	22	21	21	21
1800	54	54	53	52	52	51	51	51	50	50	49	49	48	48	47
2400	96	95	94	93	92	92	91	90	89	88	87	87	86	85	84

$\begin{array}{llllll}34500 & 34800 & 35100 & 35400 & 35700\end{array}$
苦 㰴 믕

$$
\begin{array}{ccccc}
5 & 5 & 5 & 5 & 5 \\
21 & 21 & 21 & 20 & 20 \\
47 & 47 & 46 & 46 & 45 \\
84 & 83 & 82 & 81 & 81
\end{array}
$$

Create an ellipse template

1. Draw lines $A-B$ (width) and $M-D$ (height) as in Figure 1.

Figure 1: draw lines $A-B$ and $M-D$

. Determine from the point D , using a tensioned string of length X (or $\mathrm{M}-\mathrm{B}$) in each case the point of intersection P1 and $P 2$ on line $A B$, see the figure 2.

Figure 2: define P1 \& P2

Figure 3: Draw the ellipse

Add three nails in the points P1, D P2 and connect a taut string as shown in Figure 3 Replace the nail in point D with a pen and by keeping the string taut draw the arc D and DB .

Features and benefits

Traditional method to frame short spans

Shortspan for framing short spans

LOCKING ANGLE TRIM

Locking Angle Trim is a faster, more accurate solution

- Pre-engineered locking tabs punched at 100 or 150 mm centres Eliminates setting out for Shortspan from 300 mm to 600 mm centres Eliminate measuring
- Locking tabs prevent lateral and upward movement
- Eliminate screws, pop rivets, or crimpers needed to attach tees to trim Knurled surface on both flanges
Screwstop reverse hem prevents screw spin off and provides safer handling
Crimp marks at locking tabs for fast, easy alignment

Shortspan tee engaged in Locking Angle Trim

Shortspan T-Bars

Locking Angle Trim

Locking tabs at 150 mm centres

Knurled Angle Trim

\qquad

Drywall Accessory -
Shortspan Connector Clip

$$
0^{0}
$$

$\begin{array}{llll}\text { A } 349 \text { G } & 70 & 49 & 100\end{array}$ \qquad 260

Locking Angle Trim details (LAT 12H and LAT 10H)

nstallation Notes
Shortspan tees must be cut within 3 mm of the vertical leg of the Locking Angle Trim

LAT 12H, LAT 10H and KAM 12B must be screwed securely through to structured wall or studs at no more than 600 mm centres, unless otherwise stated by Gypsum board manufacturer
Locking Angle Trim is designed to only work
with Armstrong Drywall Grid products

Lateral support options
Use with longer spans to eliminate lateral movement

The Shortspan connector clip A 349 G must be installed with a minimum of two fixing screws.
he scrap tee (Shortspan) can be used and installed perpendicularly, and slid onto a Shortspan connector clip. or load capacity table, see page 30 .

Knurled Angle Trim details (KAM 12B)

DGS Shortspan - Load table $\mathrm{kg} / \mathrm{m}^{2}$ / Load conform EN14195
The following table gives the maximum permitted load in $\mathrm{kg} / \mathrm{m}^{2}$ for the DGS - Shortspan system for the spacings noted.

Item N .	Profile leng (mm)	$\underset{(\text { Spacing }}{\substack{\text { Sm }}}$	Span in mm - Load capacity in kg/m ${ }^{2}$							
			1200	1500	1800	2100	2400	3000	3600	4200
S7708P	2440	300	22.9	-	-	-	22.9\%)	-	-	-
		400	17.2	-	-	-	17.2\% ${ }^{\text {\% }}$ (1)	-	-	-
		450	15.2	-	-	-	15.2*)	-	-	-
		500	13.7	-	-	-	13.74)	-	-	-
		600	11.4	-	-	-	$11.4{ }^{*}(1)$	-	-	-
S7710P	3050	300	-	18.0	-	-	-	18.0**)	-	-
		400	-	13.5	-	-	-	$13.5{ }^{\text {² }}$ (1)	-	-
		450	-	12.0	-	-	-	$12.0{ }^{\circ}(1)$	-	-
		500	-	10.8	-	-	-	$10.8{ }^{\text {r () }}$	-	-
		600	-	$18.8{ }^{*}(1)$	-	-	-	$13.9{ }^{\circ}(2)$	-	-
S7712P	3660	300	-	-	14.7	-	-	-	14.740)	-
		400	-	-	11.0	-	-	-	11.0*(1)	-
		450	-	-	20.7(1)	-	-	-	$15.2^{\prime 2}(2)$	-
		500	-	-	18.65*)	-	-	-	${ }^{13,77^{\prime}(2)}$	-
		600	-	-	15.5\%)	-	-	-	${ }^{11.4} 4^{4}(2)$	-
S7714P	4270	300	-	-	-	12.4	-	-	-	19.4*(2)
		400	-	-	-	$19.88^{\text {+ }}$ ($)$	-	-	-	$14.5{ }^{*}(2)$
		450	-	-	-	17.64*)	-	-	-	12.9*(2)
		500	-	-	-	$15.8{ }^{\text {\% }}$ ()	-	-	-	$11.6{ }^{\text {+ }}$ (2)
		600		-		$13.2{ }^{2}(1)$				9,7*(2)

(1) requires 1 hanger centered 2 hangers in $1 / 3$

Values in the above table conform to EN 14195:
Load figures in kg 9 m tor boards load \& potentiar insulation. Grid load already deducted
No other applied loads such as luminaires, air diffusers, smoke detectoros, sprinklers, hanging signs etc. are permited if not already taken into account. A safety load of $10 \mathrm{~kg} / \mathrm{m}^{2}$ should be subtracted from the above numbers for areas subject to wind uplift.
Please contact Armstrong Technical Sales for further details.

PROJECT: Hotel Jakarta (NL) SOLUTION: Drywall Grid System - Flat

© Simon Miles, Nike Bourgeois, Michael van Oosten, Sonja Bell

Advisory note

All photographic and design elements supplied in this brochure do not necessarily reflect any recommendation by any of the companies named in this brochure as to the proper use or recommended methods of installation of suspended ceilings and are supplied only as informative material. For technical reasons in printing, differences may appear between colours printed in this brochure and the actual product. The choice of colours should always be made from a sample of the product. All statements and technical information contained in this brochure, or any publication of the companies named in this brochure, relating to Armstrong ceilings are based on results obtained under laboratory test conditions. It is the responsability of the user to verify with the seller of the products in writting that such statements and information are appropriate to the specific use intended. Sales of the products and liability of the selling companies are in accordance with the terms and conditions of sale of the selling company. All product specifications are subject to modifications without prior notice.

Solutions

